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Abstract: This paper presents a switching controller for positioning a unicycle-like mobile
robot at a desired point with final orientation in completely unknown environments
avoiding obstacles. Besides, two algorithms are proposed: the first allows the robot to
detect when the obstacle was successfully avoided and the second is intended to decide if
the obstacle will be avoided by its right or left side. The obstacle avoidance is performed
using a reactive contour-following controller. The switching controllers include the
stability analysis at the switching times, using common and multiple Lyapunov functions.
Finally, experimental results in a Pioneer III mobile robot show the performance of the

proposed controllers.
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1. INTRODUCTION
The problem of programming a mobile robot to
move from one place to another is of course as old as
the first mobile robot. In mobile robotics almost
every task to solve deal with the problem of parking
(Aicardi, et al., 1995) or with the classical behavior
“move-to-goal” in behavior-based architectures
(Arkin, 1998). The wunicycle model has a
no holonomic constraint that makes it impossible
design a continuous invariant control law that
guarantees to reach a final posture in Cartesian
coordinates. In a seminal paper by Brockett (1983) it
is implied that so-called nonholonomic systems
cannot be stabilized by a differentiable and time-
invariant state feedback. Intuitively a nonholonomic
constraint restricts a vehicles motion locally but not
globally. For the kinematic unicycle, the
no holonomic restriction implies no sideways
motion of a point on the wheel axis. Note that under
this constraint, there is a feasible trajectory between
any two configurations (postures). The price paid for

free motion of an off-axis point is the lost of
orientation control. Several works have been
developed in this area; (Fierro, et al., 1996) uses the
dynamic model of the mobile robot and achieve the
objective by means of neural networks, in (de Wit, et
al., 1992; Tayebi, et al., 1997; Aicardi, et al., 1995) a
change in the coordinates of the kinematic model
have been introduced. Another research objective,
related to the robot navigation, is the obstacle
avoidance. Regarding this problem many possibilities
appear, mainly depending on the kind of obstacle and
the inclusion of this behavior into the control
architecture (Wang, et al., 2004; Carelli, et al., 2003;
Bicho, et al., 2000).

Firstly, this paper presents a switched controller to
achieve a desired point with a desired orientation in
the Cartesian coordinates. To this aim two controllers
were considered, dividing the problem into two tasks:
1) orientate the robot and ii) achieve the goal point.
The inclusion of the only-heading controller allows
to control the geometrical trajectory of the robot,



connecting always the initial and final points always
by means of a straight line. Then, a contour-
following (CF) controller (Toibero, et al., 2006) is
considered to avoid almost any unknown obstacle
between the initial and the final point. The
combination between these strategies allows the
robot to handle very real situations, including
confinement or trap situations. Significant part of this
work is related with the stability of the system. In
this context, it is important to mention that: i) the
stability of the individual controllers was proved
using the Lyapunov theory; ii) the stability at the
switching times for the point-to-point controller was
proved using a Common Lyapunov Function.
Furthermore, 1iii) stability when reaching the
destination point was proved using multiple
Lyapunov functions.

The paper is organized as follows. Section 2 gives a
brief problem description. Section 3 presents the
kinematics of unicycle-like mobile robots. In Section
4 the individual controllers that solve the parking
problem are presented, in Section 5 the proposed
switched algorithm for obstacle avoidance is
described. Then, in Section 6 the supervisor as well
as the stability analysis of the overall control system
is developed. Finally, Section 7 shows the
experimental results.

2. PROBLEM DESCRIPTIONS

This work is divided in three parts: the first is related
to the parking problem, i.e. the control of the robot
between two arbitrary points. The second part deals
with the obstacle avoidance: the chosen algorithm is
a CF controller. Then, these two controllers are used
together in the third part of this work, which
considers the overall problem: the interaction
between the robot and the unknown environment
around. The robot must reach the final posture

[xd Ya by ]T starting from any initial posture
[xl- v, 6 ]T as can be seen in Fig.1. This problem
is depicted with detail in Sections 4, 5 and 6.
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Fig.1. Problem description

3. MOBILE ROBOT

In this paper the wheeled mobile robot of unicycle
type shown in Fig.2 is considered, in which the state
variables are x, y (the coordinates of the middle point
of the rear axle) and @ (angle of the vehicle with the
world X-axis [“X]). The rear wheel turns freely and
balances the rear end of the robot above the ground.
The kinematics of the robot can be modeled by
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where v and o are the control inputs: the forward and
the angular velocity, respectively.

Fig.2. Unicycle mobile robot

The robot is equipped with a laser radar sensor. With
reference to Fig.3, the lateral beams from 0° to 15°
(and from 165° to 180°) are used to estimate the
obstacle contour angle, while all of the beams are
used to define a guard-zone (or safety-zone), which
purpose is to detect possible robot-obstacle
collisions. This rectangular guard-zone is defined by
two parameters: the desired lateral (d,) and frontal
(dfone) distance as can be shown in Fig.3. The
minimum lateral value for a Pioneer IIIDX is about
330 millimeters.
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Fig.3. Laser rangefinder

4. PARKING PROBLEM

This section presents a switching controller that
solves the parking problem. The two subsystems are
continuous controllers described in sections 4.1 and
4.2 respectively. Then, in section 4.3 the switching
controller stability is addressed.

4.1 Heading controller
This controller allows positioning the robot at the
desired orientation angle 6, (Fig.4).
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Fig.4. Controller for Angular Position



Considering the angular error

0=6,-0, )
Its time derivative is
6-—o. 3)
The following control actions are proposed,
v=0 (4.2)
o=K;tanh(e, 0} K; >0 (4.)

The expression for the angular velocity saturates at
the value of the constant K5 . The value of k5 >0 is

chosen to increase the angular velocity for small
errors. Considering the following Lyapunov
candidate function,

a2
v, =6%12. (5)

The asymptotic stability of the system, that is:
0 (t)— 0, is easily proved.

4.2 Positioning controller
By using this controller (Secci, et al., 1999) the robot

can reach a desired point [xd Ya Q]T in the

plane, but the heading angle at the target point cannot
be adjusted (Fig.5). Considering the errors:

X=Xx;—X (6.2)
V=y,-. (6.b)
The control states are calculated as
d =3 +7? (7.a)
6 =tan'(7/%)-0 (7.b)

Analyzing the system atthe equilibrium point:

AL

The time-variation of these states become defined by
d=-v cos(g) (9.2)
0 =vsin(d)/ d - (9.b)

Considering the following Lyapunov candidate
function:

V,=0%/2+d* /2 (10)

Fig.5. Controller for Target Position

And its derivative along the trajectories
V,=00+dd=0(vsinld)/d—o)-dv cosld) (1)
Defining the control actions
v=K,(d)dcos(d) (12.a)
=K ,(d)cos(d Jsin(@ )+ k ; tanh(k, &) (12.b)
where the adjustable gain
v

K,(d)= 1:“[24 >0, (13)

It can be concluded the asymptotic stability for this
controller at the equilibrium point.

4.3 Switched Controller for parking with final
orientation

The block diagram inFig.6 describes this switching
system composed by the controllers describedin the
previous sections. The switching signal is o;. When
o, =1 the controller for distance correction is

activated, while under the cases o, =0 or o, =2
the controller for Angular Position is activated.
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Fig.6. Block diagram of the Supervisor

By redefining the errors according with Fig.7

6,=6, -6 (14.a)
0,=6,-6 (14.b)
d=+3*+5* (14.c)

and considering as individual subsystems the
controllers described in sections 4.1 and 4.2: the
switching between these controllers is ruled by an
automata, which logics is based on three different
stages, a) first the robot is oriented in direction to the
desired point by correcting the angle 6,;, b) then, the
robot achieves the final point without regard of their
orientation and c) finally the robot corrects its
orientation to the desired orientation one by making
6, -0;,,=0, as can be seen in Fig.7.
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Fig.7. Angles description for the parking controller



A switching-logic graph is depicted in Fig.8, where
the initial condition is o =0,8 =] With the
proposed control laws the robot goes straight to the
target point using the heading controller before and
after starting its movement to achieve the target
point. In order to demonstrate the stability at the
switching times, it is easy to see that (10) is the
Common Lyapunov Function for this switched
system. Therefore, the supervisor can switch among
the mentioned controllers without affecting the
stability of the system.

Point-to-Point with Final Orientation

Fig.8. Parking controller: Supervisor logic

In the following simulation results, it is shown a
comparison between a common continuous parking
controller and the proposed switching controller.

Trayectories

Fig.9. Continuous parking controller without final
orientation. Note the path followed by the robot when
moving backwards.
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Fig.10. Switching parking controller with final orientation.
Always reaching the final point by means of a straight
path.

5. SWITCHED CONTROLLER FOR PARKING
WITH OBSTACLE AVOIDANCE

Given the robot in its initial position, it must arrive at
the desired point without regard of the obstacles
between these points (the only requirement is that

there should be a feasible path). The proposed
solution is not optimal, in the sense that if two or
more possible ways are available, the selection of the
optimal path it is not performed due to lack of global
information. But the way taken by the robot will
reach the point in almost all cases, and the overall
strategy will be asymptotically stable to the destiny
point. When considering obstacles between the initial
and final points, it is important to know the moment
at which the obstacle has been avoided. To this aim,
an appropriate algorithm is proposed.

5.1 Obstacle avoided detection

This algorithm needs to know the actual position of
the robot (x,y), the desired final position (Xrgr,VRer)
and the position (Xggo,yo00) Of the laser beam at 0° that
indicates the position of the obstacle. These points
can be appreciated in Fig.11.
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@

Fig.11. An example of obstacle avoided detection for the
third quadrant and for the robot following an obstacle
(here with oval shape) at its right side. The black
robots indicate the zone where the obstacle was
avoided and the grey robots the zones where the
obstacle was not yet avoided. Similar graphs can be
constructed for the other quadrants and for the robot
following the obstacle at its left side

Then the problem is divided into four quadrants
depending on the relation between the actual and the
final points. A flag variable OBSTpassed is defined;
the value TRUE for this variable indicates that the
obstacle was actually surpassed. As an example for
the case in which xggr<x and yrgr<x, the algorithm is

OBSTACLE g = false

» 1
i {(ner > DAND gz > »)AND(x00 < X)JAND (00 < ) 1)
OBSTACLE ,,,,,, = true|

5.2 Right/Left robot side selection algorithm

As the obstacle avoidance problem is treated by
using a CF controller, it is important to detect the
side of the robot that will avoid the obstacle. To this
aim, the safety-zone defined by the laser range finder
is employed, in such a way that, analyzing the
obstacle invasion according to Fig.12 (in the next
page), it is decided if the robot will avoid the
obstacle to its left or to its right side. For brevity tis
algorithm is not explained in detail, but an intuitive
approach can be seen in Fig.12.
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Fig.12. a) Invasion to the safety-zone is stronger at its left
side and b) when the invasion is equal at both sides
the selection depends on the positions of the goal-
point. Finally, if the goal-point is just in front
(through the obstacle) then the side to follow is
randomly selected.

5.3 Block diagram
The block diagram of the control system takes the
form of Fig.13
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Fig.13. Control system block diagram

So, when 6=0 the robot is approaching the goal point
using the parking controller of Section 4.C and only
will switch to the CF controller if an obstacle
appears. The CF controller allows the robot to follow
the discontinuous contour of the obstacle at a desired
constant distance.

5.4 Stability Analysis

For the stability analysis of this switching-controller
Multiple Lyapunov Functions (Liberzon, 2003) are
considerated by associating a Lyapunov function to
each controller (one for the parking and other for the
CF) and designing a logic that guarantees that the
sequence of values for this functions is decreasing. In
order to obtain a decreasing sequence for the
Lyapunov function that represents the error to the
final point (10) the switching logic of Fig.14 is
proposed.
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Possible Crash
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Fig.14. Logic of the supervisor

In practice the logic implements the parking
controller until an obstacle is detected, then switch to

the CF controller saving the value of Eq. (10) in a
threshold variable (THR). The control will return to
the parking controller only if the obstacle was
avoided and the value of (10) is less than the
threshold. Every time the parking controller is
activated, it must recalculate the control actions
considering the actual point as the initial point, i.e.,
the robot will head at the desired final point every
time that switch to the parking controller.

Note: strictly, the value of the CF controller
Lyapunov function must be considered in the same
way, i.e., guaranteeing that its sequence be
decreasing. But considering that this controller is
asymptotically stable, each time that is activated, the
associated Lyapunov functions goes quickly to zero
while the robot is avoiding the obstacle. For this
reason the value of the threshold for this Lyapunov
function (Toibero, et al., 2006)

7
v ==0"+[k;(2)1dA (16)
0

1
2
can be set as higher as desired on each activation
without affecting the performance of the controller.

6. EXPERIMENTAL RESULTS

The experiments were carried out using a Pioneer
IIIDX mobile robot. The two first experiments were
performed in a laboratory environment in order to
show the stability constraints on the logic, while the
third was performed along a real office environment.
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Fig.15. (1): Obstacle detection and the value of Vd is taken
as the new threshold value; (2) Obstacle avoided, note
that the V4 value is greater than the threshold, so the
robot keeps following the obstacle until (3): Value of
V4 less than the threshold, switching to the parking
controller. Note that V4 is decreasing due to the
selected logic.
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Fig.16. (1): obstacle detected; (2): obstacle avoided with a
Vd value minor than the threshold. This is a direct
switching case.
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Fig.17. Large-scale experiment setting (20meters long),

CONCLUSIONS

In this paper it has been presented a switching
controller that deals with the problem of positioning
a mobile robot with final orientation by avoiding

unknown obstacles. Besides, two algorithms were
proposed: one that allows the robot to detect when an
obstacle was or not avoided; and another that selects
the side to avoid the obstacle. The presented
switching controllers have included the stability
analysis at the switching instants. Finally,
experimental results have shown the performance of
the controller in real situations.
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Fig.18. Left picture: (1,3,5,7,9) obstacle detection; (2,4,6,8,10): obstacle avoided. Right Picture: Lyapunov function.



