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Abstract: This paper is concerned with the study of nonlinear oscillations in
servotracking control systems for the teleoperation of ROVs subject to strong
currents and harmonic waves. Particularly, the case of variable cable length during
tactics on the sea bottom such as sea bottom scanning and systematic grab
sampling are analyzed. The route to chaos from predictable period-one oscillations
is studied using the cable length magnitude and rate, the current intensity, and
wave amplitude and frequency as main bifurcation parameters.
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1. INTRODUCTION
The appearance of nonlinear oscillations in moored
floating structures has been pointed out by many
authors (see for instance Ellerman et al., 2002;
Jordán and Beltrán, 2004). They frequently ap-
pear when a structure is forced to oscillate by
action of waves and strong flows.
Tethered vehicles (TVs) like tow fishes and re-
motely operated underwater vehicles (ROVs) are
two special cases of moored systems with much
more motion freedom for tracking purposes than
semisubmersible moored structures. While the
first class is represented by towed bodies, the
second one possesses self propulsion to navigate
in 6 degrees of freedom. Nevertheless both ship-
cable-vehicle systems show similar behaviors when
perturbations on the cable due to current and
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surface waves dominate significantly the dynam-
ics (Prabhakar and Buckham, 2005, Jordán and
Bustamante, 2006).

Figure 1 - Sea bottom scanning with
servocontrolled ROV

Apart from their passive and active motions in
TVs and ROVs, respectively, between both classes
there exists other fundamental difference, which



is related to the variable cable length in ROVs in
contrast with the almost always fixed length of
the towing line in TVs. A variable cable length
facilitates particular tactics in their operations,
as for instance, to scan in the water column or
irregular ocean bottom for grab sampling (Jordán
and Bustamante, 2007).

From a physical point of view, the cable shape
and the position of the attach points play a deci-
sive roll in the vehicle oscillatory behavior when
harmonic waves are present. From a mathematical
point of view, particular motions of the cable-
vehicle system are described by a Mathieu equa-
tion parametrized in a set of bifurcation para-
meters like cable length, stiffness, wave ampli-
tude and frequency, and current intensity. One
important particularity of the dynamics is the
so-called "taut-slack" phenomenon which makes
motion to be chaotic or unpredictable for tracking
or positioning (Jordán and Bustamante, 2004).
Also there was found a solid evidence of a wide
diversity in oscillatory behaviors in one dimension,
including period doubling and chaos (Jordán and
Bustamante, 2006b).
The modelling of the cable effects in the dynamics
of ROVs for 6 degrees of freedom under strong
flow currents was published in (Jordán et al.,
2006). Similarly, the study was extended to waves
acting on the pivot point of the umbilical cable on
the mother ship (Jordán and Bustamante, 2006a).

In this present paper a study of nonlinear os-
cillations are undertaken for ROVs deployed in
estuarial missions under strong currents involving
a variable cable length. The end here is to provide
a theoretical analysis of this system in 3D in
the context of a servotracking problem for ROVs
under this operation conditions.

2. QUASI-STATIONARY MODEL OF THE
CABLE

A possible configuration of the ship-cable-ROV
system is illustrated in Fig. 1, where a submersed
ROV hangs from a crane on a mother ship. Herein,
a perturbation originated by the ocean stream
causes the ROV to be dragged in the x-z plane in
favor of the flow. This produces moments which
instabilize its desired course. Also a wave action
can eventually induce cable tugs from the support
point.
Here, it is assumed that the cable remains entirely
confined in a plane defined by the directrix AA
containing the point O on the crane tackle and
the point R on the attach extreme of ROV (see
Fig.2). Also the plane can eventually hinge about
the directrix AA when the ROV moves sideways.
The hinge angle α is determined by the ROV-
coordinates taken with respect to O. One notices
also that the upper section of the cable OO0 is over

the water line, while the section O0R is completely
submersed.
The flow is considered stationary and laminar
with intensity variation only in the depth. Ad-
ditionally, the cable is assumed to have neutral
buoyancy. The ROV coordinates in the x-y-z
frame at O being [l

ROV
, h sinα, h cosα]

T .

2.1 Orbit of the support point

Consider a fixed point Ō and a frame of refer-
ences with center on it. Suppose now the ship is
anchored and that a harmonic wave excitation on
the ship produces an elliptic motion of O about
Ō in the vertical plane as illustrated in the figure.
So, the orbit of O about Ō is½

xO(t) = ax cosωt
zO(t) = ay sinωt

. (1)

where ax and ay are the ellipse radii.
On the other side, the coordinates of R are (cf.
Fig. 2)

xR(t) = lROV (t)− ax cos(ω t) (2)

zR(t) =
(hROV (t) + ay sin(ω t))

cosα(t)
(3)

α(t) = tan−1
µ
h
ROV (t) + ay sin(ω t)

sROV (t)

¶
. (4)

and the projection of coordinates in the hinged
plane onto the vertical plane yields

x(t) = xc(t) + ax cos(ωt) (5)

z(t) =−zc(t) cosα(t) + ay sin(ωt). (6)

The coordinates of O0 on the hinged plane are
obtained with help of (5)-(6) as

b1 =
b+ ay sin(ωt)

cosα(t)
, (7)

where b is the coordinate z of O0 on the vertical
plane and α = tan−1(sROV /hROV ). Clearly, O

0

also lies on the cable plane.

Figure 2 - Elliptic motion of the winch pivot



2.2 Equations

The force relations on the cable satisfy (see Fig.
3)

T
dxc
dp

+H −
Z zc

b1

∂fD
∂z̄c

dz̄c = 0 (8)

T
dzc
dp

+W
s

La
= V (9)µ

dxc
dp

¶2
+

µ
dzc
dp

¶2
= 1 (10)

T = EA0

µ
dp

ds
− 1
¶
, (11)

where s is the so-called unstretched Lagrangian
coordinate and analogously p the stretched La-
grangian coordinate of the profile with dp =p
dx2c + dz

2
c ; s = La at point O

0
, La is the

unstretched cable length on OO0 with a weight
W , ∂fD

∂zc
(zc) is the load distribution function of

the drag force in the direction zc; T is the cable
tension at s; and V and H are modulus of the
vertical and horizontal reactive forces at extreme
O, respectively. Now, let us consider the sections
OO0 of length La and O0R of length Lw separately.

2.3 General solution of cable profile

The solution of (8)-(10) will be different according
to the stretch, namely on air or in water. As
a general solution is however very involved, we
tackle better the solution by sections instead.

2.3.1. Cable on air To this end, let us first to
deal with the upper portion OO0 . Accordingly,
with ∂fD

∂zc
= 0 and from (8)-(11) one achieves (cf.

Jordán and Beltrán, 2004)

T (s) =

s
H2 +

µ
V −W s

La

¶2
(12)

xc(s) =
Hs

EA0
+
HLb
W

Ã
sinh−1

V

H
- sinh−1

V -Ws
La

H

!
(13)

zc(s) =
WLa
EA0

µ
V

W
− s

2Lb

¶
+ (14)

HLb
W

⎛⎝s1+µV
H

¶2
−
s
1+
µ
V -W s/La

H

¶2⎞⎠ .
The weightW corresponding to the cable of length
La is

W = gρ
w

πD2

4
La. (15)

withD the diameter and ρ = ρ
w
the water density.

The coordinates of the crossing point O0 are
calculated from (13) and (14) as a1 = xc(La) and
b1 = zc(La), respectively. The length La will be
calculated later.

zc

xc

l

V

h

H OFlow

c

D
z
f
∂
∂

A

Cable

p

T(p)R

lROV

HROV

VROV

O’ Water lineb/cosα

a

∫ ∂
∂

c

c

D

z

b
cz

f dz
h

1

1

Figure 3 - Foces in the cable plane xc-zc

2.3.2. Cable in sea water On the other hand, for
the section O0R the weight disappears while the
drag force takes its place as a distributed load.
The flow rate is referred to as uc and assumed
from now on constant in the depth. Thus, one can
apply the Morison’s law and one attains (Fig. 3)

F
D(zc) =

Z zc

b1

∂fD
∂z̄c

dz̄c =

Z zc

b1

ρ
w
D Cd u

2
c

2
dz̄c (16)

=
ρ
w
D Cd u

2
c

2
(zc − b1) , (17)

with C
D
the drag coefficient for slender cylinders.

Combining (8)-(9) for s > La, it is valid

dxc
dzc

=

R zc
b1

∂fD
∂z̄c
dz̄c −H

V −W . (18)

Then, integrating (18) it results for zc ≥ b1

xc(zc)=xc(La)+
1

V -W

Z zc

b1

ÃZ z̆c

b1

∂fD
∂z̄c

dz̄c-H

!
dz̆c.

(19)
Unlike to the cable shape in the air with a cate-
nary form, the shape of the cable submersed as-
sumes a quadratic form for constant rate profiles.
Certainly, one attains

xc(zc)=xc(La)-
H

V -W
(zc-b1)+

ρ
w
D Cd u

2
c

4 (V -W )
(zc-b1)

2 ,

(20)
with xc(La) obtained from (13).

2.4 Forces

The tension of the cable is obtained by combining
(8)-(10). It is valid for 0 ≤ s ≤ La (cable section
on air)

T (s) =

s
H2 +

µ
V − gρ

w

πD2

4
s

¶2
, (21)

and for zc ≥ b1. For the point R the forces are

HROV = FD(h)−H, VROV =
Ã
V −

gρ
w
πD2La

4

!
.

(22)
The forces H and V of point O will be determined
later.



2.5 Moments

For the particular case (16) acting on the vertical
segment O0R, The moment with respect to R is

h H + l
ROV

V − ρ
w
D Cd u

2
c

2

(h− b1)2
2

−

−
³
lROV +

a1
2

´ gρ
w
πD2La

4
= 0. (23)

with

a1=
HLb
EA0

+
4H

gπD2ρ
w

(sinh−1
V

H
- sinh−1

V -
gπD2Laρ

w

4

H
).

(24)
2.6 Cable length

The study of elastic interactions of the ship-cable-
ROV system involves strengths in both lengths,
i.e., in p and s. Here, they are referred to as the
stretched and unstretched lengths

L̄ =

Z L

0

dp

ds
ds (25)

L =

Z L

0

ds, (26)

respectively. The unstretched length L can be
measured at the revolving spool of the ship crane
system exactly, while the stretched length L̄ has
to be calculated from model with positions and
forces on the cable ends O and R.

Accordingly, one can calculate from (14) with
s = La and EA0 >> W

H

¡
V − W

2

¢

La =

V -H

sµq
1+
¡
V
H

¢2
-
gρ

w
πD2

4

H
b+ay sin(ωt)
cosα(t)

¶2
-1

gρ
w

πD2

4

,

(27)
where (7) and (15) were employed therein.

On the other hand, the length of the section O0R
for the submersed cable is achieved indirectly by
calculating first the cable length L. To this end,
let us determine first ds

dzc
= dp

dzc
ds
dp from (9) and

(11) for s ≥ La and positions h and b1. So, after
integration, it is valid

L− La =
Z L

La

ds =

Z h

b1

ds

dzc
dzc = (28)

=

Z h

b1

T

V − gρ
w

πD2

4

EA0
EA0 + T

dzc =

=EA0

Z h

b1

sµ
H− ρwDCdu

2
c(zc−b1)
2

V−gρ
w
πD2

4

¶2
+ 1

EA0 +

sµ
H− ρwDCd u2c(zc−b1)

2

V−gρw
πD2
4

¶2

+1

1/
¡
V−gρ

w
πD2

4

¢
dzc.

The last integral has been solved by symbolic

programming with MATHEMATICA
R°
5.0. Due

to space restriction this large result is not tran-
scribed here. Generically, this yields

L = La +G(uc, b1, h,H, V ), (29)
where G is a multivariable expression to be eval-
uated numerically in our next study.

3. DETERMINATION OF UPPER CABLE
FORCES

The determination of H and V is not straight-
forward because many equations involve variables
explicitly, i.e., there exist no close expressions for
solving the problem of forces and cable profile
analytically. So, we aim to an exact but numerical
solution.

Toward this goal, following algorithm is proposed
in (Jordán et al., 2006; Pinna-Cortiñas et al.,
2006), and redefined here for elastic cords. A close
solution is developed for uniformly distributed
drag loads. This consists in:

1. Start-up. Use starting values for b, lROV , h,
L, D, EA0, ay, ρw and Cd. Also a constant
flow rate uc is provided.

2. Calculate F
D(h) according to (17)

3. Solve the nonlinear equations (29) with (27)
and (23) with (24) for V and H recursively,
e.g., by employing a gradient-base search-
ing algorithm. For starting the iterations

use V0 =
ρ
w
D Cd u

2
c(h−b1)

4 tan
¡
sin−1

¡
h−b1
L

¢¢
and H0 =

ρ
w
D Cd u

2
c(h−b1)

4 as initial condi-
tions.

4. Calculate the force components HROV and
V
ROV on the ROV by means of (22)

5. Calculate the cable form (13)-(14) for zc ≤ b1
and (19) for b1 < zc ≤ h.
Our experience shows that the convergence

of step 3 is reached after a few iterations
(in average less than 20 with "fzero" of

MATLAB
R°
7.0 (R14)).

4. APPLICATION TO ROV CONTROL
One of the main elements in the ship-cable-ROV
system is the control exerted on the ROV in its
flight path or regulation about one fixed point.
It is usually based on a model of the vehicle. In
this section, we will describe a high-performance
control system for ROVs in 6 degrees of freedom.
Details are given in (Jordán and Bustamante,
2006c).
Consider the ROV dynamics given by

M v̇r = -C(vr)vr-D(|vr|)vr+Fb(η)+Fc+Ft (30)
η̇ = J(η)vr, (31)

with the matrices

M =Mb +Ma (32)

C(vr) =Cb.× C0(vr) + Ca.× C0(vr) (33)

D(|vr|) =Dl +Dq diag(|vr|), (34)

where the generalized position in the earth-
fixed frame is denoted by η=[x, y, z,φ, θ,ψ]T ,
vr= [ur, vr, wr, pr, qr, rr]

T indicates the general-
ized relative velocity vector in its flight path in
a body-fixed frame, J(η) is a well-known rotation
matrix depending on the Euler angles φ and θ,
M is the inertia matrix composed by the body



inertia matrix Mb and the added mass matrix
Ma that accounts for the surrounded fluid mass,
C is the centripetal and Coriolis matrix with a
first component Cb. × C0 for the body dynamics
and a second component Ca.× C0 for the hydro-
dynamics, the operation ".×" denotes element-
by-element multiplication of constant matrices
Cb and Ca times a state-dependent matrix C0, D
is the damping matrix composed by a constant
matrix and a velocity-depending matrix, Fb is
the net buoyancy force, Fc the cable reaction
force, and Ft the generalized thrust (see Jordán
and Bustamante, 2006c). Moreover, Cb, Ca, Dl,
and Dq are constant matrices and the notations
diag(vr) and diag(|vr|) mean diag(ur, ..., rr) and
diag(|ur|, ..., |rr|), respectively.
The cable force on the ROV depends on fixed-
earth coordinates. In order to project it onto the
main axis of the moving vehicle we state first

F0c = J
−1
1 [−HROV ,−VROV sinα, VROV cosα]T ,

(35)
where J1 is the upper block matrix of J and F0c is
the force on the point R in the vehicle-fixed axis.
Finally, the cable force is a generalized force with
the form

Fc=
h
F
0
cx ,F

0
cy ,F

0
cz , -czF

0
cx ,czF

0
cx+cxF

0
cz , -cxF

0
cx

iT
,

(36)
where the cx and cz are the coordinates x and z,
respectively, of R with respect to G.

We employ a fixed controller that determines the
generalized thrust by feeding back the states η
and vr. So, it is valid

Ft = C (vr)vr+Dlvr+Dq diag (|vr|) |vr+ (37)

+Fb (η)+Md
³
η,
v
η,

v
vr, t

´
-Kv

v
vr-JT (η)

v
η-Fc,

with

d(
v
η,

v
vr,η, t)=

d

dt

¡
J−1(η)

¡
ηref -

.
ηc
¢¢
-
dJ−1

dt
Kp

v
η+

+ J−1(η)K2
p

v
η + J−1uc − J−1(η)KpJ(η)

v
vr, (38)

and
v
η and

v
vr being positioning and cinematic

errors in a tracking navigation problem defined
as v

η= η − ηref (39)
v
v= vr−J−1(η)

¡
η̇ref − η̇c

¢
+ J−1Kp

v
η, (40)

where
.
ηc is the flow velocity vector in the earth-

fixed frame, which has uc as the unique element.

Therefore, the control action (37) entails the per-
turbation of the cable force Fc in (36), which is
supposed here known for the study and unknown
for the controller in (37).

5. SIMULATION

We carry out experiments to illustrate the features
of the proposed control of nonlinear oscillations.
They are fitted to the setup of to Table I according
to the Fig. 1 which was taken as case study.

Table I. Setup parameters for experiments

Param. Value Param. Value

CD 0.9 (lROV )ref variable (m)
L [20÷ 60](m) (h)ref 20(m)
.

L [.05÷ .061](m
s
) uc −0.15(m

s
)

ρw 1021(Kg/m3) b 0(m)
D 2× 10−2(m) ax 0.5(m)
EA0 ∞(N) ay 0.35(m)

ω 1.5(Hz) u [0.÷ 0.1](m
s
)

Figs. 4-5-6 describe a mission concerning the reg-
ulation of the ROV about (x, z) = (45.65, 20)(m),
in where the cable length is extended from L =
50(m) to 60(m) at a rate L̇ = 0.05(m/s). As the
figures clearly show, the transition of L involves
the route to chaos from a period-one oscillation.
The evolution of the cable force is becoming softer
when the cable is lengthened.
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Figure 4 - Phase portrait for mode x. Transition
from L = 50(m) to 60(m) (top), regulation with
L = 50(m) (middle) and L = 60(m) (bottom).
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The second experiment concerns the path-following
navigation of the ROV along a stretch at constant
depth and rate of displacement. Herein, the cable
length transits from L = 22(m) up to L = 50.5(m)
at L̇ = 0.061(m/s). Figs. 7 and 8 depict the evolu-
tion of the advance coordinate x in phase portrait



and the ROV cable force. Clearly, the transitions
of qualitative behaviors evolve dynamically. The
nonlinear oscillation starts with period one and
then increases its power chaotically when tending
to L = 50(m). Also the cable force increases with
chaotic evolution.
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6. CONCLUSIONS

This paper has dealt with the study of controlled
nonlinear oscillations in navigation of ROVs sub-
ject to strong currents and harmonic waves. Par-
ticularly, the case of sampling missions with vari-
able cable length are focused in the investigation.
A model for quasi-stationary dynamics of a ship-
cable-ROV system was developed together with a
high-performance control system for attenuating
perturbations similar to cable tugs in form of
nonlinear oscillations. The mean position of the
ROV is selected as the main bifurcation parameter
in the study.

The analysis reveals that nonlinear oscillations are
quite possible in ROV navigation and teleopera-
tion. In our study, transits from period-one oscil-
lation to chaos (and vice versa) in both regulation
and tracking control cases of the vehicle were
clearly evidenced. Therein, it was worth noticing
that chaotic scenarios are associated with large
increments of the cable force even without causing
thrust saturation.
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