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Abstract: A new procedure for the calibration of a camera through the observation of a 
flat pattern from different points of view is proposed. Effects of lens distortion on the 
estimation of a homography between the model plane and its image have been 
considered, obtaining a simultaneous estimate of this homography and the distortion 
coefficients. As the distortion is mainly radial, it is necessary to estimate previously the 
coordinates of the principal point so that they can be used for estimation of the distortion 
coefficients. The comparison of this method with current non-linear optimization methods 
is shown in the paper. 
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1. INTRODUCTION 

 
By “camera calibration” we understand the 
extraction of the set of parameters relating the space 
under observation to the image obtained in such 
space. A variety of methods have been developed for 
this purpose which could be generally classified into: 
 

a. Linear methods comprising the solution of a 
linear system of equations, which implies an 
advantage as regards speed and simplicity; 
however, the accuracy achieved with them is 
very poor and, besides, they do not include the 
effects of the distortion produced by the lens 
system (Abdel-Aziz and Karara, 1971; Tsai, 
1987; Knight, et al., 2003). 

b. Non-linear methods comprising non-linear 
optimization methods by means of which much 
better results are obtained since they allow for 
the inclusion of (non-linear) distortion 
parameters. Their inherent disadvantage is the 
high computational demand required. These 
methods comprise a solution in a closed manner 
which may serve as an initial estimate of the 
final optimization algorithm (Heikkil and Silvn, 
1997; Hartley, 1994). 

 
The accuracy obtained depends largely on the 
parameter set adopted to model the camera and its 
lens system. The most widespread model, especially 

in computer applications aimed at obtaining 3D 
measures (Fusiello, et al., 2000; Farbiz, et al., 2005), 
is the “pinhole” model.  
 
The latter can be defined as a transformation between 
the coordinate system of the 3D space under 
observation and the camera coordinate system 
(extrinsic parameters), and then the transformation of 
a mapping of the points of said space to 2D points on 
the image plane (intrinsic parameters).  This model is 
insufficient most of the times due to the presence of 
inherent distortions caused by the lens systems, 
which make the image to deflect considerably from 
the linear model in many cases. One way to 
overcome this disadvantage is the inclusion of 
distortion parameters in the model, which, added to 
the former parameters, become necessary 
information in applications which require the 
extraction of metric data from the space under 
observation.  
 
This work is organized as follows: in the first part, 
the model of a pinhole camera and the manner of 
representing the most significant distortions are 
described. In the second part, the process of 
parameter estimation and the solution in the closed 
manner is adopted. Finally, in the third part, the 
comparative results with the method proposed by 
Zhang are shown. 
 



 

    

 
2. CAMERA MODEL 

 
By adopting the pinhole model and following the 
notation used in the Zhang’s referenced paper, we 
can relate one point in the 3D space to the 2D point 
projected on the image, both in homogenous 
coordinates, by means of the following 
transformation: 
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where s is an arbitrary scale factor, [u, v, 1]T are the 
coordinates of the 2D point projected on the image, 
[xw, yw, zw, 1]T are the coordinates of the point in the 
reference frame of the 3D space, and [x, y, z, 1]T are 
the coordinates of the same 3D point, but respect 
to the coordinate system of the camera.  R represents 
the rotation of the coordinate system of the 3D points 
with respect to the origin (xw0, yw0, zw0, 1), t is a 
vector representing the translation of the origin of the 
coordinate system of the 3D space to the origin of the 
camera coordinate system, (x0, y0, z0, 1), and A is a 
3x3 matrix given by  
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where (u0, v0) represent the coordinates of the 
principal point, c is a factor reflecting the skewness 
of the image axes, and α and β represent, 
respectively, the scale factors on the u and v axes of 
said image. In the set of parameters described, R and 
t correspond to the extrinsic parameters, while A 
corresponds to the intrinsic parameters. 
Based on the pinhole model, and considering the 
case in which the points of interest are on the same 
plane, we can choose the reference system so that 
said plane is on zw=0, which leads to: 
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where Rz=0 is equal to matrix R in which the third 
column has been deleted.  Because of this, one point 
in the coordinate system of the 3D space and its 
image are related by means of a homography H, 
where  

0[ | ]z== ⋅H A R t           (4) 
 
 

3. DISTORTION MODELING 
 
The pinhole camera does not include any kind of 
parameter relative to the distortions caused by the 
lens system. The most significant form of distortion 
is radial, which causes a shift in the radial direction 

of the point on the image respect to the principal 
point coordinates. This shift gives rise to two kinds 
of distortions on the radial direction, whether it 
occurs inwards (barrel distortion) or outwards 
(pincushion distortion). Such form of distortion can 
be modeled as an infinite series, as in 
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where r represents the distance from the principal 
point to the point on the image plane without 
distortion (the ideal), and rd is the distance from the 
principal point to the observed (distorted) point with 
r=(x2+y2)1/2, and ki are the distortion coefficients. 
Nevertheless, it has been noticed (Tsai, 1987) that the 
inclusion of terms higher than k2 contribute to 
improving the result but can produce numeric 
instability.. From (1) follows that  
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where, by using expressions (1) and (2), it is easy to 
verify that 
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It is worth mentioning that with the inclusion of 
terms higher than a k1 there is no solution to (7) in a 
closed manner. The solution, then, must be reached 
through iterative methods. 
 
 

4. PARAMETER ESTIMATION 
 
 
4.1 Considerations upon the initial parameter 

estimate. 
 
Many of the present methods for camera calibration 
make an initial estimate (in a closed form) of the set 
of parameters in order to use it as a starting point for 
a later, non-linear optimization stage as can be 
achieved by the Levenberg-Marquardt method 
(Press, et al., 1992), which implies a great 
computational demand. The effect of distortions is 
not taken into consideration in the initial parameter 
estimate. In this work, we propose to consider the 
effect of the pinhole model deflections in the initial 
stage. For this reason, and assuming that the radial 
distortion is the predominant form in said deflections, 
we can make an estimate of the parameters in the 
region of the image where image distortions are 
relatively small: in the neighborhood of the principal 
point. But, in general, the principal point does not 
coincide with the center of the image, so in the first 
stage we must make an estimate of said point. 
 
4.2 Estimation of the principal point. 
 
In the calibration procedures based on planes, 
chessboard-like patterns are generally used.  This is 
mainly due to the ease of detection of the control 



 

    

points and to the ease of obtaining an accurate 
detection at sub-pixel level, as can be done through 
the method proposed in Harris and Stephens (Harris 
and Stephens, 1988). Let us make this our case. On 
such a pattern, we will consider each point on the 
line determining its position -in rows and columns- 
as if it were a matrix.  Once the control points are 
detected on the image, what we obtain is a grid of 
points affected by the distortion of the lens system. 
This distortion, when considered in its radial form, 
has the principal point as its center. An indicator of 
the distortion degree is the deflection accumulated on 
the control points respect to the middle line to which 
they belong.  If we consider a (model) plane 
“reasonably” parallel to the image plane, said 
accumulated deflections determine a distortion 
profile whose minimum corresponds to the principal 
point. This deflection is given by 
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where d1 represents the distance between the straight 
line 

1 2y p x p= +  and the point considered, and N is 

the number of points on the line considered.  
Parameters p1 and p2, which minimize the least mean 
squared error respect said straight line can be found 
as in Zhang, (Zhang, 1997) and they result from 
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where (udi, vdi) are the coordinates -in pixels- of the 
control points on the image. So, once the 
accumulated deflections have been obtained by rows 
and columns on the model’s grid, it is possible to 
estimate the principal point by means of the 
minimum of such deflections. 
 
 
4.3 Estimation of a homography between the 

model’s plane and the image. 
 
From (3) and (4) we get that 
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where hij represent elements of H. In this way,    
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with 
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With n control points whose images are within the 
neighborhood of the principal point estimated in 
section 2.2, n equations result as in (12), which 
together form a 2n x 9 matrix in the following way: 

. =C h 0   (14) 

The solution in (14) corresponds to the right singular-
value associated to the least singular-vector of C and 
can be found by means of its singular value 
decomposition (SVD). 
In order to contribute to the robustness of the general 
schema, it is necessary to proceed to a previous 
normalization as that described in Hartley (Hartley, 
1995). In our case, an isotropic normalization proved 
to be good enough. 
 
 
4.4 Estimation of the distortion coefficients 
 
Unlike the complete set of intrinsic parameters (2), 
we will pose the problem for a reduced form as in 
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This results from considering the squareness of 
pixels (α=β=f) and orthogonal axes (c=0).  Let us 
consider now a similar simplified form of the 
distortion model (5), including only up to the term 
which involves the k1  coefficient. In this way, the 
result is 
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with r2=x2+y2. Now, by taking into account the 
reduced form (15), we have 
 

0u fx u= + ,       
0v fy v= +  (17) 

 
and so we can express (16) as 
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where 1
11k ' k f −= , 2 2 2

0 0( ) ( )r' u u v v= − + − . Here, 

(u, v) are obtained on the basis of (11) and (u0, v0) are 
the coordinates of the principal point estimated in 
section (4.2) Then, we can express (18) as 
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By considering N points (the complete set of the 
model points), we can group them to form a 2N x 2 
matrix. This matrix can be resolved in the same way 
as in (14). Once 

1k '  has been obtained, it is possible 

to solve (18) for (u,v) so as to improve the estimation 
of H by means of the solution in (14). This iterative 
procedure finishes when the value of 

1k '  becomes 

close enough to zero. It is worth mentioning that the 



 

    

 u0 v0 
Reported by Zhang for five images 303.96 206.56 
Image 1 289.95 217.07 
Image 2 293.69 212.31 
Image 3 281.24 216.69 
Image 4 297.57 210.30 
Image 5 293.14 203.57 
Mean Value 291.12 211.99 
Standard Deviation 6.15 5.52 

 

final value 
1k '  results from the addition of the values 

obtained in each iteration. This can be seen if we 
consider the following: let us call the value of 

1k '  -

estimated in the iteration i- ( )1 ik ' ; in this way,  

2
( ) ( ) ( ) ( )

( ) ( 1)

(1 ), 1,2,...,d i i 1 i i

i d i

r ' r ' k 'r ' i n

r ' r '−

= + =

=
       

(20) 

here, under the observation that in real cameras 
1

1 11k ' k f −= � , the above expression for 
( )d ir '  can be 

approximated as 2 2
( ) ( ) ( )(1 2 )i 1 i ir ' k 'r '+ . Then, solving 

(20) for the set of the ( )1 ik '  obtained, 
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where the first term of (21) includes the addition of 
the ( )1 ik ' estimated, while term K includes products of 

the  ( )1 ik '  and powers of 
(n)r ' . Here, 

(n)r ' M≤ , where 

M results from the size of the image, and the ( )1 ik '  

form a monotonous series with 01(i)k ' → . By 

considering the orders of magnitude of the factors, it 
can be seen that 0K → . 
 
 
4.5 Closed form solution to the camera calibration 

problem. 
 
Following the method proposed by Zhang, two 
restrictions on the intrinsic parameters derived from 
the orthonormality of R are obtained, and hence, 
from (4):  

( )
( ) ( )

1 1
1 2

1 1 1 1
1 1 2 2

0

0

TcT c

T TcT c cT c

− −

− − − −

=

− =

h A A h

h A A h h A A h

       (22)  

where c
ih corresponds to the i-th column vector H –

defined up to a scale factor, λ–. By considering  

( )1 1T− −=B A A                        (23) 

we can represent the symmetric matrix B (with 
B12=B21=0 and B22=B11) by means of vector 
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for which, based on (22), we have  
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where hij represents elements of the H estimated 
homography. With the p (p ≥ 2) images we can 
group the equations (25) corresponding to each 

image and form a 2p x 4 matrix V, thus resolving the 
system  

⋅ =V b 0    (26) 

whose solution is found in the same way as in (14).  

Considering that ( )1 1T
λ − −=B A A , the intrinsic set 

of parameters results in 
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with ( )2 2

11 11 33 13 23B B B B Bλ = − − . Once matrix A 

has been obtained, the extrinsic set of parameters 
result from 
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where c
ir represents the i-th column vector of R and 

1 1
1 21/ 1/c cλ − −= =A h A h . Due to the presence of 

noise, the estimated R matrix does not satisfy, in 
general, the properties of a rotation matrix. In Zhang 
(Zhang, 1998), a method is described for the 
estimation of a rotation matrix, R’ , which may come 
close to R and which may minimize the Frobenius 
norm of the (R’  – R) difference. The latter comes 
from R’ = UVT, with U and V being the matrixes 
resulting from the singular value decomposition of R, 
in the equation: R = USVT.    
    
    

4. EXPERIMENTAL RESULTS 
 

The results reported by Zhang (Zhang, 1999), 
(method 1) were compared to those obtained with the 
method herein proposed (method 2) for the same set 
of images, which can be found in (Zhang, 1998). The 
data is shown in Table 1.  
A comparison has been made between the results 
reported by Zhang, (method 1) and those obtained by 
using the method proposed, i.e. method 2. The same 
set of images adopted by Zhang (Zhang, 1998) was 
used in our case. Results are shown in Table 1. 

 
Table 1. Results in the estimation of the  

principal point 

 
In Fig. 1a -pixel coordinates- the following data is 
shown by way of example for image Nº 3: 1) 
geometrical centre of the image; 2) principal point 
resulting from using Zhang’s method after 



 

    

3 images 
method 1 

parameter 
Initial Final 

method 2 

1: α/β, 2: f 
917.65/ 
920.53 

830.80/ 
830.69 

833.11 

u0 277.09 305.77 300.72 
v0 223.36 206.42 206.15 
k1 0.128 -0.229 -0.205 
k2 -1.986 0.196 - 
4 images 

method 1 
parameter 

Initial Final 
method 2 

1: α/β, 2: f 
876.62/ 
876.22 

831.81/ 
831.82 

831.07 

u0 301.31 304.53 301.77 
v0 220.06 206.79 206.85 
k1 0.145 -0.229 -0.205 
k2 -2.089 0.195 - 
5 images 

method 1 
parameter 

Initial Final 
method 2 

1: α/β, 2: f 
877.16/ 
876.80 

832.50/ 
832.53 

832.80 

u0 301.04 303.96 301.08 
v0 220.41 206.56 207.01 
k1 0.136 -0.228 -0.206 
k2 -2.042 0.190 - 

  

2 images 
method 1 

parameter 
Initial Final 

method 2 

1: α/β, 2: f 
825.59/ 
825.26 

830.47/ 
830.24 

837.20 

u0 295.79 307.06 300.45 
v0 217.79 206.55 207.03 
k1 0.161 -0.227 -0.202 
k2 -1.955 0.194 - 

optimisation, and 3) principal point estimated by the 
procedure described in section 2.2. 
In Fig. 1b the deflection profile obtained respect to 
the horizontal lines (left) and vertical lines (right) on 
the model’s image is illustrated. 

 
(a) 

 
(b) 

Fig. 1. (a) Estimation of the principal point, (b) 
accumulated dispersion respect to the mean lines. 

 
In the estimation of the principal point, instead of 
adopting the minimum of the accumulated 
dispersions, the minimum of the parabola which 
better approaches the set of points formed by said 
minimum and its two adjacent points was considered.   
Better results are obtained by using a model with a 
greater quantity of points –a denser grid- so as to 
reduce the spacing between the lines. One way of 
achieving this is by means of an interpolation such as 
the one described in the paragraph above. 
The results obtained with the procedure proposed as 
well as the comparison with those reported in Zhang 
(Zhang, 1999) are shown below. We adopted a radius 
of 150 pixels around the estimated principal point for 
the determination of the reduced homography 
between the model’s plane and the image.   
In the estimation of kl, the number of iterations was 
limited to 10 for each image and, as a final value, the 
mean value was taken. Table 2 shows the results 
obtained for a variable number of images. 
 

Table 2  Results obtained for 2, 3, 4 and 5 images 

 
(a) 

 
(b) 

Figure 2. Variation of: (a) estimated intrinsic 
parameters and (b) distortion coefficient in terms 
of the neighbourhood of the (estimated) principal 
point considered. 



 

    

 
In the results above, a remarkable improvement 
respect to the solution in the closed form proposed in 
Zhang (Zhang, 1999) can be seen, so much so that 
said results are very close to those obtained after an 
optimisation process. 
Another noticeable advantage is that, as the quantity 
of images increases, the estimation on the parameters 
improves, and their values show a tendency to 
become very stable. 
Still another difference occurs in the estimation of 
the distortion coefficients, and even though only the 
first one was considered, truly satisfactory results are 
achieved. In the case of Zhang’s method, the 
estimation of said parameters in a closed form is very 
far from the final values obtained, and it is even an 
alternative choice to set them first to zero before 
proceeding to the final optimisation stage.  
It is interesting to analyse the effect of the size of the 
neighbourhood around the principal point considered 
on the estimation of the parameters. Here follows an 
example for the case of 5 images (Fig. 2), and a 
variation of said neighbourhood from 50 to 350 
pixels. 
It can be seen that below a given value, the 
estimation made for different radii within a 
neighbourhood of the principal point is very erratic, 
but it becomes stable when said value is surpassed. 
This “threshold” value is, in the case under study, 
around 125 pixels. Above that value, the estimation 
on the intrinsic parameters becomes quite stable.  
In the case of kl, a progressive decay in the 
estimation is noticed as the radius of the 
neighbourhood considered increases. This 
impairment becomes more acute when a given value 
is surpassed, which, in our case, is around 250 pixels. 
The process takes place because, as we increase the 
radius of said neighbourhood, the effect of the lens 
distortion on the estimation of the homography 
between the model’s plane and the image begins to 
increase too, and the estimation of the homography 

has a direct relation on the estimation of 1k ' . 
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