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Abstract: A new procedure for the calibration ofaanera through the observation of a
flat pattern from different points of view is progmm. Effects of lens distortion on the

estimation of a homography between the model pland its image have been

considered, obtaining a simultaneous estimate isf lomography and the distortion

coefficients. As the distortion is mainly radidl,i$ necessary to estimate previously the
coordinates of the principal point so that they barused for estimation of the distortion

coefficients. The comparison of this method withrent non-linear optimization methods

is shown in the paper.

Keywords Computer vision, camera calibration, lens distostioccamera model,
photogrammetry.

1. INTRODUCTION in computer applications aimed at obtaining 3D

measures (Fusiell@t al, 2000; Farbizet al, 2005),
By “camera calibration” we understand the js the “pinhole” model.

extraction of the set of parameters relating thacep

under observation to the image obtained in suchThe latter can be defined as a transformation betwee
space. A variety of methods have been developed fokhe coordinate system of the 3D space under
this purpose which could be generally classifigd:in  observation and the camera coordinate system
(extrinsic parameters), and then the transformaifon
a. Linear methodscomprising the solution of a 3 mapping of the points of said space to 2D paints
linear system of equations, which implies an the image plane (intrinsic parameters). This mixlel
advantage as regards speed and simplicity;insufficient most of the times due to the presenice
however, the accuracy achieved with them is inherent distortions caused by the lens systems,
very poor and, besides, they do not include thewhich make the image to deflect considerably from
effects of the distortion produced by the lens the linear model in many cases. One way to
system (Abdel-Aziz and Karara, 1971; Tsai, overcome this disadvantage is the inclusion of
1987; Knightet al, 2003). distortion parameters in the model, which, added to
b. Non-linear methods comprising non-linear the former parameters, become necessary
optimization methods by means of which much information in applications which require the
better results are obtained since they allow for extraction of metric data from the space under
the inclusion of (non-linear) distortion gpservation.
parameters. Their inherent disadvantage is the
high computational demand required. These This work is organized as follows: in the first part
methods comprise a solution in a closed mannerthe model of a pinhole camera and the manner of
which may serve as an initial estimate of the representing the most significant distortions are
final optimization algorithm (Heikkil and Silvn,  described. In the second part, the process of
1997; Hartley, 1994). parameter estimation and the solution in the closed
manner is adopted. Finally, in the third part, the

The accuracy obtained depends largely on thecomparative results with the method proposed by
parameter set adopted to model the camera and itghang are shown.

lens system. The most widespread model, especially



of the point on the image respect to the principal
2. CAMERA MODEL point coordinates. This shift gives rise to two lénd
) ] ) of distortions on the radial direction, whether it
By adopting the pinhole model and following the qceyrs inwards (barrel distortion) or outwards

notation used in the Zhang's referenced paper, Wepincushion distortion). Such form of distortionnca
can relate one point in the 3D space to the 2Dtpoin pe modeled as an infinite series. as in

projected on the image, both in homogenous
coordinates, by means of the following ry =rf ) =r (Q+kr 2 +k gy +..) )
transformation:

wherer represents the distance from the principal

X X point to the point on the image plane without
u Y, y distortion (the ideal), and; is the distance from the
s|vi=AR|t]D 7" [=A (1) principal point to the observed (distorted) poirithw
1 Z r=(x*+y?)"?, and k, are the distortion coefficients.
1 1 Nevertheless, it has been noticed (Tsai, 1987 Xtieat

inclusion of terms higher thark, contribute to
wheresis an arbitrary scale factdu, v, 1] are the  improving the result but can produce numeric
coordinates of the 2D point projected on the image,instability.. From (1) follows that
[Xws Vs Zw, 1]" are the coordinates of the point in the
reference frame of the 3D space, §xdy, z, 1] are X = Xl = XA+ KPP+ Kt + ) ©6)
the coordinates of the same 3D point, but respect - -
to the coordinate system of the cameRarepresents Yo = Yo = MK+ ket )
the rotation of the coordinate system of the 3Ifoi  \yhere, by using expressions (1) and (2), it is ¢asy
with respect to the originxfo, Ywor Zwor 1), tis @  verify that
vector representing the translation of the oridithe
coordinate system of the 3D space to the origihef Uy = W+ (u- )+ kP + kP +.) @)
camera coordinate systemxo,(yo, %, 1), andA is a V= v+ (V=) KR+ kL)
3x3 matrix given by @ 0
It is worth mentioning that with the inclusion of
terms higher than kg there is no solution to (7) in a
@ closed manner. The solution, then, must be reached
through iterative methods.

A=

O O
ox o
I—‘o<é:

where (o, Vo) represent the coordinates of the

principal point,c is a factor reflecting the skewness 4. PARAMETER ESTIMATION

of the image axes, and» and S represent,

respectively, the scale factors on thandv axes of

said image. In the set of parameters descriBeahd 4.1 Considerations upon the initial parameter
t correspond to the extrinsic parameters, wiile estimate.

corresponds to the intrinsic parameters.

Based on the pinhole model, and considering theMany of the present methods for camera calibration
case in which the points of interest are on theesam make an initial estimate (in a closed form) of Hed
plane, we can choose the reference system so thaif parameters in order to use it as a startingtgfoin

said plane is on,z0, which leads to: a later, non-linear optimization stage as can be
achieved by the Levenberg-Marquardt method
u X X, (Press, et al, 1992), which implies a great

_ Yo | _ (8)  computational demand. The effect of distortions is
s V| =ARI] o|™* Rkl % not taken into consideration in the initial paragnet
1 1 1 estimate. In this work, we propose to consider the
effect of the pinhole model deflections in theialit
where R is equal to matrixR in which the third  stage. For this reason, and assuming that thel radia
column has been deleted. Because of this, one poindistortion is the predominant form in said deflens,
in the coordinate system of the 3D space and itswe can make an estimate of the parameters in the
image are related by means of a homography region of the image where image distortions are
where relatively small: in the neighborhood of the pripedi
H=AIR,,|t] (4) point. But, in general, the principal point doeg no
coincide with the center of the image, so in thstfi
stage we must make an estimate of said point.
3. DISTORTION MODELING 4.2 Estimation of the principal point.
The pinhole camera does not include any kind of

i lative to the distorti d by th In the -calibration procedures based on planes,
parameter refative 1o the distorions caused by e, qoqqhq0ard-like patterns are generally used. his i
lens system. The most significant form of distortion

. ; . s . , mainly due to the ease of detection of the control
is radial, which causes a shift in the radial dimet y



points and to the ease of obtaining an accuratéWith n control points whose images are within the
detection at sub-pixel level, as can be done throug neighborhood of the principal point estimated in
the method proposed in Harris and Stephens (Harrissection 2.2,n equations result as in (12), which
and Stephens, 1988). Let us make this our case. Otogether form a@x 9 matrix in the following way:
such a pattern, we will consider each point on the Ch=0 (14)
line determining its position -in rows and columns- T
as if it were a matrix. Once the control pointe ar The solution in (14) corresponds to the right siagul
detected on the image, what we obtain is a grid ofvalue associated to the least singular-vectd ahd
points affected by the distortion of the lens syste can be found by means of its singular value
This distortion, when considered in its radial form, decomposition (SVD).

has the principal point as its center. An indicaibr  In order to contribute to the robustness of theegain

the distortion degree is the deflection accumulated schema, it is necessary to proceed to a previous
the control points respect to the middle line tdath  normalization as that described in Hartley (Hastley
they belong. If we consider a (model) plane 1995). In our case, an isotropic normalization prbv
“‘reasonably” parallel to the image plane, said to be good enough.

accumulated deflections determine a distortion

profile whose minimum corresponds to the principal

point. This deflection is given by 4.4 Estimation of the distortion coefficients
N
D= zdi (8) Unlike the complete set of intrinsic parameters (2)
i=1 we will pose the problem for a reduced form as in

whered, represents the distance between the straight 0w
line y=px+ p and the point considered, ahdis A=10 f v,
0

the number of points on the line considered. 0 1
Parameterg, andp,, which minimize the least mean ) o
squared error respect said straight line can bedfou This results from considering the squareness of

as in Zhang, (Zhang, 1997) and they result from pixels (@=p=f) and orthogonal axes<0). Let us
consider now a similar simplified form of the

(15)

— —(xT Ay T 9 distortion model (5), including only up to the term
P [pl pz] (XXX ©) which involves thek; coefficient. In this way, the
ith result is
wi
Uy = uo"'(u_ Ll))(l+ K'z) (16)
.
X:{uil U;_z uﬂ Y=[vy v, o v (10) V, =V, + (V- )1+ k)

with r’=x*+y®>. Now, by taking into account the

where (i4i, Vi) are the coordinates -in pixels- of the reduced form (15), we have

control points on the image. So, once the
accumulated deflections have been obtained by rows

and columns on the model's grid, it is possible to u=ix+y, v=fy+y (17)
estimate the principal point by means of the
minimum of such deflections. and so we can express (16) as

Uy =W +(U— L{))(l'i' K'rlz) (18)
4.3 Estimation of a homography between the Vy =V +(v— )+ K'Te)

model’s plane and the image.
where k'=k f™, r’=@u-u,)*+(v-y,)? Here,

From (3) and (4) we get that (u, v)are obtained on the basis of (11) mgl v) are
the coordinates of the principal point estimated in
U= h,x,+h,y + hs section (4.2) Then, we can express (18) as
+h,y, +
:312+rr:2y + E - (u=u,) (=) L1715 (1)
e (-v) (-vere [Tk,

ho Xy + P ¥, + g

whereh; represent elements Bf. In this way, By consideringN points (the complete set of the
model points), we can group them to formN22

_ _ _ matrix. This matrix can be resolved in the same way
P” Yo 100 0w, —uy, j[ﬁ,:o (12) as in (14). Once,' has been obtained, it is possible
0 00X, % 1-w -w, - to solve (18) fol(u,v) so as to improve the estimation
with of H by means of the solution in (14). This iterative
procedure finishes when the value kf becomes

h=[h, h, h, h, h, hy h, h, hJ3T (13)  close enough to zero. It is worth mentioning thet t



final value k' results from the addition of the values image and form a 2p x 4 matik thus resolving the
obtained in each iteration. This can be seen if weSYStem

consider the following: let us call the value igf -
estimated in the iteratidn kl(i)'; in this way,

[ I— 1 1 12 HE—
ooy =T ¥kl "), 12120 o0
Moy =Tag-

here, under the observation that in real cameras

k'=k f«1, the above expression focr(i)' can be
approximated asy;) 2(1+ XKyt
(20) for the set of th&l(i)' obtained,

%). Then, solving

Moy =T |:1+ {Z;k 0 Jru’) 2} +K (21)
=

where the first term of (21) includes the additmn
the kl(i)' estimated, while terrK includes products of

the kl(i)' and powers of(n; . Moy

M results from the size of the image, and IQ(%'

Here, <M , where

form a monotonous series Wit'fk1<n'| - 0. By

considering the orders of magnitude of the factiors,
can be seen th& - 0.

4.5 Closed form solution to the camera calibration

problem.

Following the method proposed by Zhang, two

restrictions on the intrinsic parameters deriveirr
the orthonormality ofR are obtained, and hence,
from (4):

T(pA-1\ A -1c—
hiT(A™) A™hs=0 22)
(A7) A™he-heT(A™) ATh ¢=0
where h? corresponds to thieth column vectoH —
defined up to a scale factdr. By considering

B=(A%) A" (23)

we can represent the symmetric matix (with
B;>=B,,=0 andB,,=B;;) by means of vector

b= [ B, By By BaJT
for which, based on (22), we have
h11hlZ+ h21|f]22 h31h12+ hllh32

huz + h212 - h122 - h222 2( h31h11_ h12h3)
h31h22+ h21h32 h31h32 :| b=o (25)

(24)

2(h31h21_ h22h32) hsi - h3§

where h; represents elements of tli¢ estimated
homography. With the pp(= 2) images we can

group the equations (25) corresponding to eachresulting

V=0
whose solution is found in the same way as in (14).
Considering thatB = A (A'l)TA‘l, the intrinsic set

(26)

of parameters results in

uoz_%,voz_k, i= |4 @
1

By B,

with 1 = 511(511533— B, - Bzg). Once matrix A

has been obtained, the extrinsic set of parameters
result from

rP=AA"h$ ri=RA"h¢

(28)
rs=rix s t=ATN¢

where I’ represents theth column vector oR and
A=1/|Ahg|=1/Ahg.
noise, the estimate® matrix does not satisfy, in
general, the properties of a rotation matrix. In@ha
(Zzhang, 1998), a method is described for the
estimation of a rotation matrig’, which may come
close toR and which may minimize the Frobenius
norm of the R’ — R) difference. The latter comes
from R’ = UV', with U andV being the matrixes
resulting from the singular value decompositiofiRof

in the equationR = USV".

Due to the presence of

4. EXPERIMENTAL RESULTS

The results reported by Zhang (Zhang, 1999),
(method 1) were compared to those obtained with the
method herein proposed (method 2) for the same set
of images, which can be found in (Zhang, 1998). The
data is shown in Table 1.

A comparison has been made between the results
reported by Zhang, (method 1) and those obtained by
using the method proposed, i.e. method 2. The same
set of images adopted by Zhang (Zhang, 1998) was
used in our case. Results are shown in Table 1.

Table 1. Results in the estimation of the

principal point
W Vo

Reported by Zhang for five images 303.96 206.56
Image 1 289.95 217.07
Image 2 293.69 21231
Image 3 281.24 216.69
Image 4 297.57 210.30
Image 5 293.14 203.57
Mean Value 291.12 211.99
Standard Deviation 6.15 5.52

In Fig. 1a -pixel coordinates- the following data i

shown by way of example for image N° 3: 1)
geometrical centre of the image; 2) principal point
from using Zhang's method after



optimisation, and 3) principal point estimated hg t
procedure described in section 2.2.

In Fig. 1b the deflection profile obtained resptrct
the horizontal lines (left) and vertical lines fiyon
the model's image is illustrated.

W VT /
06 \ / 0.6 \ /

04 0i4 \
\

i il
0 0
10

5 10 15 5
rows columns

15

(b)
Fig. 1. (a) Estimation of the principal point, (b)
accumulated dispersion respect to the mean lines.

In the estimation of the principal point, instead o
adopting the minimum of the accumulated
dispersions, the minimum of the parabola which
better approaches the set of points formed by saic
minimum and its two adjacent points was considered.
Better results are obtained by using a model with a
greater quantity of points —a denser grid- so as to
reduce the spacing between the lines. One way o
achieving this is by means of an interpolation sagh
the one described in the paragraph above.

The results obtained with the procedure proposed a:
well as the comparison with those reported in Zhang

(zhang, 1999) are shown below. We adopted a radius

of 150 pixels around the estimated principal péont
the determination of the reduced homography
between the model’s plane and the image.

In the estimation ok, the number of iterations was
limited to 10 for each image and, as a final vathe,
mean value was taken. Table 2 shows the result:
obtained for a variable number of images.

Table 2 Results obtained for 2, 3, 4 and 5 images

2 images

method 1
parameter Initial Final method 2
. .. 825,59/ 830.47/

1. alp 2. f 825 26 830 24 837.20

Uo 295.79 307.06 300.45

Vo 217.79 206.55 207.03

kq 0.161 -0.227 -0.202

ko -1.955 0.194 -

3 images
parameter m.e.thod 1 . method 2
Initial Final
) o, 917.65/ 830.80/
1. alB 2. f 920.53 830,69 833.11
Uo 277.09 305.77 300.72
Vo 223.36 206.42 206.15
ki 0.128 -0.229 -0.205
ko -1.986 0.196 -
4 images
parameter mg_thod 1 . method 2
Initial Final
] . 876.62/ 831.81/
l.alpg2:f 876.22 83182 831.07
Uo 301.31 304.53 301.77
Vo 220.06 206.79 206.85
k1 0.145 -0.229 -0.205
ko -2.089 0.195 -
5 images
parameter m.e.thod 1 ) method 2
Initial Final
) ., 877.16/ 832.50/
1. alB 2. f 876.80 832 53 832.80
Uo 301.04 303.96 301.08
Vo 220.41 206.56 207.01
ki 0.136 -0.228 -0.206
ko -2.042 0.190 -

1100

estimated intrinsic parameters

150 200 250
vicinity of the principal point (in pixels)
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-03
-0.32

-0.34
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160 1%0 2E|)0 2%0 360
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Figure 2. Variation of: (a) estimated intrinsic
parameters and (b) distortion coefficient in terms
of the neighbourhood of the (estimated) principal
point considered.



photogrammetry Papers from the American
In the results above, a remarkable improvement Society of Photogrammetry Symposium on
respect to the solution in the closed form propased Close-Range Photogrammetry, Urbana, lllinois
Zhang (Zhang, 1999) can be seen, so much so that 433, pp. 1-18.
said results are very close to those obtained after Fusiello A., E. Trucco, and A. Verri (2000). A
optimisation process. compact algorithm for rectification of stereo
Another noticeable advantage is that, as the gyanti pairs, Machine Vision Applicationsipl. 12, pp.
of images increases, the estimation on the paramete 16-22.
improves, and their values show a tendency toHarris C. and M. Stephens (1988). A combined

become very stable. corner and edge detector, 4th ALVEY vision
Still another difference occurs in the estimatidn o conference, pp 147--151.

the distortion coefficients, and even though ohlg t Hartley R. I. (1994). An algorithm for self calithi@n
first one was considered, truly satisfactory resate from several views, Proc. Conference on
achieved. In the case of Zhang's method, the  Computer Vision and Pattern Recognition,
estimation of said parameters in a closed fornery v Seattle, WA, pp 908-912.

far from the final values obtained, and it is en  Hartley R. (1995). In Defence of the 8-Point
alternative choice to set them first to zero before  Algorithm, Proc. Fifth Intl Conf. Computer
proceeding to the final optimisation stage. Vision, pp. 1064-1070.

It is interesting to analyse the effect of the siz¢he Heikkil J., & O. Silvn (1997). A Four-step Camera
neighbourhood around the principal point considered  Calibration Procedure with Implicit Image
on the estimation of the parameters. Here follows a Correction, IEEE Computer Society Conference
example for the case of 5 images (Fig. 2), and a on Computer Vision and Pattern Recognition,
variation of said neighbourhood from 50 to 350 San Juan, Puerto Rico, pp. 1106-1112.

pixels. Knight J., A.Zisserman, |. Reid (2003),. Linear
It can be seen that below a given value, the Auto-Calibration for Ground Plane Motion, Proc.
estimation made for different radii within a Conference on Computer Vision and Pattern
neighbourhood of the principal point is very egati Recognition, pp 503-510.

but it becomes stable when said value is surpassed?ress W. H., S. Teukolsky, W. Vetterling, and B.
This “threshold” value is, in the case under study, Flannery (1992). Numerical Recipes in C,
around 125 pixels. Above that value, the estimation Second EditionCambridge University Press.
on the intrinsic parameters becomes quite stable. Farbiz F., S. Prince, A. D. Cheok, Wei Liu, ZhiYing
In the case ofk, a progressive decay in the Zhou, Ke Xu Ke, M. Billinghurst, H. Kato
estimation is noticed as the radius of the (2005). Live three-dimensional content for
neighbourhood considered increases. This augmented reality. Multimedia, |IEEE
impairment becomes more acute when a given value  Transactions on Multimedi¥ol. 7, Issue 3, pp
is surpassed, which, in our case, is around 25€lgix 514-523.
The process takes place because, as we increase thsai R. Y. (1987), A versatile camera calibration
radius of said neighbourhood, the effect of theslen technique for high-accuracy 3D machine vision
distortion on the estimation of the homography metrology using off-the-shelf TV cameras and
between the model's plane and the image begins to lenses. IEEE Journal of Robotics and
increase too, and the estimation of the homography  Automation 3(4):323-344.
has a direct relation on the estimationkof. Zhang Z. (1999), Flexible camera calibration by
viewing a plane from unknown orientations. In
Proc. of ICCV99, pp 666-673.
Zhang Z. (1997), Parameter estimation techniques: A
tutorial with application to conic fitting, Image
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