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Abstract: This paper presents a nonlinear control strategy for robotic manipula-
tors. The controller combines a nonlinear feedback law with a feedforward one. In
order to reduce the number of sensors a nonlinear observer is used to estimate both
states and disturbances from measured variables. In this way, an observer-based
feedback/feedforward controller is designed. The proposed controller is applied to
a two-link manipulator for illustrating its performance.
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1. INTRODUCTION

Robotic manipulators performance can be im-
proved by rejecting disturbances via a feedforward
strategy. In many cases, a feedforward controller is
combined with a feedback controller for obtaining
good performance of the controlled system.

When feedforward compensation is used, sensors
are needed for measuring disturbances. In in-
dustry applications this appears as a drawback
to be overcome; thus, designers employ different
techniques for avoiding those sensors. A widely
used technique incorporates good estimates of the
disturbances. Since an estimate is not the actual
value of the disturbance, system performance is
slightly deteriorated when the actual disturbances
values are replaced by their estimates. However,
there are two main reasons for using an observer-
based controller: (a) deterioration could be in-
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significant if good estimates are included in the
feedforward controller and (b) when estimates are
constructed from other measured variables many
sensors could be eliminated.

A well-known procedure of estimating distur-
bances is to use disturbance observers (DO).
These observers have been employed in both
linear and nonlinear control strategies in many
applications (see (Chen et al., 2004)(Chen et
al., 2000b)(Yang et al., 2005) among others and
references in these papers). As above mentioned,
estimates are used for designing a feedforward
compensator and this compensator can be com-
bined with a feedback strategy for constructing a
feedforward/feedback controller.

Based upon this idea, recently in (Chen et al.,
2000a) and (Chen, 2004) a disturbance observer-
based controller has been introduced. In (Chen et
al., 2000a) a nonlinear disturbance observer is em-
ployed for compensating the friction for a two-link
robotic manipulator. In (Chen, 2004) a general



framework is presented and the controller is tested
over a two-link robotic manipulator. Although the
performance is improved by including a DO for
estimating disturbances (or unknown dynamics),
in the controller proposed in (Chen, 2004), all the
state variables need to be measured.

In spite of the fact that the DO-based controller is
useful in some cases, a more general scheme should
consider a nonlinear observer (NO) estimating
disturbances and states from other measured vari-
ables. The main advantage of this scheme consists
in reducing the number of sensors.

The main goal in this paper is to present an output
control strategy based on a nonlinear observer.
The performance of this controller is almost the
same as that of the DO-based controller intro-
duced in (Chen, 2004). By using the proposed
scheme many sensors could be avoided depending
on the case under consideration. By taking into
account the whole system, it can be mentioned
that during the brief time needed to the estimated
states convergence to their the actual values the
NO observer-based controller performance slightly
differs from that of the DO observer-based con-
troller. Nevertheless, in practice the advantages of
reducing the number of sensors are many (for in-
stance, a scheme with a reduced number of sensors
is less expensive, rugger and easier to maintain).

In this paper, the proposed controller is applied
for tracking velocities in a two-link manipulator
robot. In this case, only position sensors are used
for estimating both velocities and disturbances.
The closed-loop scheme performs very well. It is
important to remark that the controller proposed
in (Chen et al., 2000a) and (Chen, 2004) not
only requires position sensors but velocity sensors
as well. On the contrary, by using our proposal
a high-performance controller is obtained and
in comparison with the controller introduced in
(Chen, 2004), velocity sensors are not needed.
The paper is organized as follows. In section 2,
the controller is introduced. In section 3, the
control strategy is applied to a two-link robotic
manipulator. Finally, conclusions are drawn in
section 4.

2. NONLINEAR OBSERVER BASED
CONTROL

Consider a nonlinear system given by (see (Chen,
2004))

χ̇= f(χ) + g(χ)u+ gd(χ)d (1)

y= h(χ) (2)

where χ ∈ Rn, u ∈ Rv, y ∈ Rp and d ∈ Rd

are the state vector, input, output and external

disturbance, respectively. In addition, consider
disturbances generated by a nonlinear exosystem
assumed to be neutrally stable and given by

ξ̇ = fξ(ξ) (3)

d= hd(ξ) (4)

where ξ ∈ Rs. Then, an extended system can be
attained by combining (1)-(4), such that

χ̇= f(χ) + g(χ)u + gd(χ)hd(ξ) (5)

ξ̇ = fξ(ξ) (6)

y = h(χ) (7)

Taking into account the system given by (5)-(7), it
must be remarked that in many cases both vectors
(i.e. χ and ξ) can be estimated from the measured
variables (y). When DO is used, only the vector ξ
is estimated. Moreover, note that either a reduced
or a full order observer can be constructed for
the system (5)-(7) (see (Solsona et al., 2000) and
(DeAngelo et al., 2003) for examples).

2.1 A nonlinear observer

It is well known that there exist several tech-
niques for designing nonlinear observers. Among
others, it is possible to mention the nonlinear
Luenberger-like observer, variable structure ob-
server, extended Kalman filter, passivity based
observer and linear dynamics observer. However,
analysis of different techniques is beyond the scope
of this paper.

In what follows, a nonlinear Luenberger-like ob-
server is designed (Cicarrella et al., 1993)(Dalla-
Mora et al., 2000) for constructing an η =
[χT ξT ]T estimator, where η ∈ Rm and m = n+
s. Note that η contains both states and distur-
bances. By rewritting (5)-(7), we obtain

η̇ = ϕ(η) + φ(η)u (8)

y = ψ(η) (9)

with ϕ(η) = f(χ) + gd(χ)hd(ξ), ψ(η) = h(χ) and
φ(η) = g(χ).

Then, given the system represented by (8) and (9),
an observer for estimating η can be constructed
measuring y. A procedure for constructing the
observer is developed below. In order to obtain the
observer, the following nonlinear transformation is
used,

z = [z1 . . . zm]T = [γ1(η) . . . γm(η)]T ∈ Rm (10)

where z is the state vector in new coordinates and
it is assumed that m > p (see γi(η) definition in
eqns. (11)-(23)). Therefore, a transformed repre-
sentation becomes



y1 = ψ1(η) = γ1(η) = z1 (11)

ż1 =
∂γ1

∂η
(ϕ+ φu) =

= γ2(η) + µ2(η)u =

= z2 + µ2(η)u (12)

ż2 =
∂γ2

∂η
(ϕ+ φu) =

= γ3(η) + µ3(η)u =

= z3 + µ3(η)u (13)
...

żl1−1 =
∂γl1−1

∂η
(ϕ+ φu) =

= γl1(η) + µ3(η)u =

= zl1 + µl1(η)u (14)

żl1 =
∂γl1

∂η
(ϕ+ φu) = σ1 + δ1u (15)

y2 = ψ2(η) = γl1+1(η) = zl1+1 (16)

żl1+1 =
∂γl1+1

∂η
(ϕ+ φu) =

= γl1+2(η) + µl1+2(η)u =

= zl1+2 + µl1+2(η)u (17)
...

żl1+l2−1 =
∂γl1+l2−1

∂η
(ϕ+ φu) =

= γl1+l2(η) + µl1+2(η)u =

= zl1+l2 + µl1+l2(η)u (18)

żl1+l2 =
∂γl1+l2

∂η
(ϕ+ φu) =

= σ2(η) + δ2u (19)

...

yp = ψp(η) = γl1+···+lp−1+1(η) =

= zl1+···+lp−1+1 (20)

żl1+···+lp−1+1 =
∂γl1+···+lp−1+1

∂η
(ϕ+ φu) =

= γl1+···+lp−1+2(η) +

µl1+···+lp−1+2(η)u =

= zl1+···+lp−1+2 +

= µl1+···+lp−1+2(η)u (21)
...

żl1+···+lp−1 =
∂γl1+···+lp−1

∂η
(ϕ+ φu) =

= γl1+···+lp + µl1+···+lp(η)u =

= zl1+···+lp +

= µl1+···+lp(η)u (22)

żl1+···+lp =
∂γl1+···+lp

∂η
(ϕ+ φu) =

= σp(η) + δpu (23)

where
∑p

k=1 lk = m. Assuming that ∂γ
∂η is non-

singular in η, there exists; η = γ̃(z), which means
that the vector η (i.e., in original coordinates) can
be calculated from the knowledge of the vector z
via γ̃ (by using the Inverse Function Theorem).
In new coordinates, the model given by (8)-(9)
results

ż =Az + ρ(z) + π(z)u (24)

y =C z (25)

where

ρ(z) = [0 · · ·σ1(η) 0 · · ·σ2(η) · · · σp(η)]T |(η=γ̃(z))

and

π(z) = [µ1 · · · δ1(η) µ2 · · · δ2(η) · · · δp(η)]T |(η=γ̃(z))

From the comparison of (24) and (25) with
equations (11)-(23), the following assignment is
obtained:

A=




A1 0 0
...

. . .
...

0 Ak 0
...

. . .
...

0 0 Ap




(26)

where Ak is a matrix of dimension lk × lk, with
k = 1, · · · , p, given by

Ak =




0 1 0 · · · 0
0 0 1 · · · 0
...

. . . . . . . . .
...

0 · · · · · · · · · 1
0 · · · · · · · · · 0




(27)

and C is a matrix of dimension p×m given by

C =




C1
1

Cl1+1
2

...
Cj

i
...
Cl1+···+lp−1+1

p




(28)

where Cj
i , with j = 1, . . . ,

∑(j−1)
k=1 lk + 1, is a

row vector with 1 in the position j and zero
otherwise. Under this construction, the pair (C,A)
is observable. Considering the nonlinear system
given by (24) and (25) and assuming that ρ(z) +
π(z)u is Lipschitz in z, uniformly in u, with a



Lipschitz constant L, an asymptotic estimator
from z is given by

˙̂z = Aẑ + ρ(ẑ) + π(ẑ)u+G (y − Cẑ) (29)

with G a constant matrix, when there exist P and
Q positive definite matrices satisfying

(A−GC)TP + P (A−GC) = −Q (30)

and
−λmin

Q + 2λmax
P L < 0 (31)

where λmin
Q is the minimum eigenvalue of matrix

Q, λmax
P is the maximum eigenvalue of matrix P

(see appendix B for a demonstration).

After ẑ has been calculated, the estimated vari-
ables in original coordinates (η̂) are obtained using
the function γ̃,

η̂ = γ̃(ẑ) (32)

Note that η̂ contains states and disturbances esti-
mates.

2.2 The Controller

Several nonlinear control laws can be used for
controlling robotic manipulators. For instance,
feedback linearization (Isidori, 1995), IDA-PBC
(Ortega and Garćıa-Canseco, 2004) (interconnec-
tion and damping assigment passivity-based con-
trol) or back-stepping (Dawson et al., 1998). High
performance schemes are attained by using these
control laws. Nevertheless, in many applications
states measurements are needed for implement-
ing the above mentioned control laws. In order
to reduce the numbers of sensors, observer-based
controllers can be designed. In these cases, con-
troller parameters can be chosen for guaranteeing
the whole system stability. It can be done by using
several techniques. For instance, in (Chen, 2004)
Lyapunov theory is used. Others techniques can
be found in (Etchechoury et al., 2001) and refer-
ences there in.

3. AN EXAMPLE

Consider the DO-based control applied to a two-
link robotic manipulator. In this case, DO-based
control law needs position and velocity sensors
to be implemented (see (Chen et al., 2000a) and
(Chen, 2004)). However, our proposal can be used
for avoiding velocity sensors. In a previous work
(Solsona and Puleston, 2000) a reduced-order non-
linear observer was designed for estimating veloc-
ities in N-link manipulators. Nevertheless, distur-
bances were not taken into account in that work.
In spite of that it is possible to extend the system
by including the disturbance dynamics and by

designing an observer for estimating velocities and
disturbances from the positions measurements.
Consider the model of the rigid two-link manipu-
lator resulting from Lagrange equations (Solsona
and Puleston, 2000)

J(q)q̈ = τ − C(q, q̇)q̇ − τg(q) (33)

where q, q̇, q̈, are positions, velocities, and acceler-
ations, respectively. τ is the control torque, J(q)
is the definite positive inertia matrix, C(q, q̇) is
the Coriolis and centripetal matrix, and τg are
the gravity components. Then, from (33) and in-
cluding distubances (ξ1,ξ2), a state-space model
results in

ẋ1 = x3 (34)

ẋ2 = x4 (35)[
ẋ3

ẋ4

]
= J−1(x1, x2)

(
τ − C(x)

[
x3

x4

]

−τg(x1, x2)) +

[
ξ1
ξ2

]
(36)

ξ̇1 = 0 (37)

ξ̇2 = 0 (38)

with x = [x1, x2, x3, x4]T . In this case, a non-
linear reduced-order observer for estimating ve-
locities and disturbances from positions measure-
ments can be designed as follows (see (Solsona
and Puleston, 2000) for the design of a reduced-
order observer estimating velocities from positions
measurements).




˙̂x3
˙̂x4
˙̂
ξ1
˙̂
ξ2


 =




J−1(x1, x2)

(
τ − C(x̂)

[
x̂3

x̂4

]

−τg(x1, x2)) +

[
ξ̂1
ξ̂2

]

0
0




+G

[
ẋ1 − x̂3

ẋ2 − x̂4

]
, (39)

with x̂ = [x1, x2, x̂3, x̂4]T . In order to avoid
differentiating the measured positions, a simple
change of variables can be used, so that the
equations to be implemented become




ẇ1

ẇ2

ẇ3

ẇ4


 =




J−1(x1, x2)

(
τ − C(x̂)

[
x̂3

x̂4

]

−τg(x1, x2)) +

[
ξ̂1
ξ̂2

]

0
0




−G

[
x̂3

x̂4

]
(40)




x̂3

x̂4

ξ̂1
ξ̂2


 =




w1

w2

w3

w4


 + G

[
x1

x2

]
. (41)

By using the estimated variables, nonlinear con-
trol laws can be constructed as proposed in (Chen,



2004). For instance, by using either feedback lin-
earization technique (Isidori, 1995) or IDA-PBC
method (Ortega and Garćıa-Canseco, 2004) the
following law for speed tracking is obtained,

τ = J(x1, x2)
{[

ẋ3ref

ẋ4ref

]
−

[
ξ̂1
ξ̂2

]
−

− KC

[
(x̂3 − x3ref

)
(x̂4 − x4ref

)

]}
+

+C(x̂)
[
x̂3

x̂4

]
+ τg(x1, x2), (42)

with KC a constant matrix gain.

Note that the control law (42) uses positions
measurements, estimated velocities and estimated
disturbances. In this way, when this control
strategy is used velocity sensors are avoided. Tak-
ing into account a two-link robotic manipulator
whose data and parameters are given in appendix
A, speed-tracking performance is illustrated in
Figures 1-4. Whereas Fig. 1 and 2 show velocities
references and velocities in links 1 and 2, respec-
tively; velocities tracking errors are drawn in Figs.
3 and 4.

4. CONCLUSIONS

In this paper a nonlinear observer-based controller
for robotic manipulators has been proposed. In
order to obtain good performance, the controller
combines feedback and feedforward strategies.
Feedforward law is used for rejecting disturbances.
However, disturbance sensors are avoided by em-
ploying a nonlinear observer. The observer es-
timates both states and disturbances such that
the proposed strategy results less expensive than
others found in the literature. As an example, the
control strategy is tested on a two-link robotic
manipulator.
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Fig. 1. Link 1, velocity reference and actual veloc-
ity.
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Fig. 2. Link 2, velocity reference and actual veloc-
ity.
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Fig. 3. Link 1, velocity tracking error
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Fig. 4. Link 2, velocity tracking error
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APPENDIX A

J =

[
J11 J12

J21 J22

]

J11 = m1lc21 + m2(l21 + lc22 + 2l1lc2cos(x2)) + I1 + I2

J12 = m2(lc22 + l1lc2cos(x2)) + I2

J21 = m2(lc22 + l1lc2cos(x2)) + I2

J22 = m2lc22 + I2

C =

[
−m2l1lc2sin(x2)x4 −m2l1lc2sin(x2)(x3 + x4)
−m2l1lc2sin(x2)x3 0

]

τg =

[
(m1lc1 + m2l1)gsin(x1) + m2lc2gsin(x1 + x2)

m2lc2gsin(x1 + x2)

]

Manipulator parameters: l1 = 0.45 m, l2 = 0.55 m, lc1 =
0.091 m, lc2 = 0.105 m, m1 = 23.90 kg, m2 = 4.44 kg, I1 =
1.27 kgm2, I2 = 0.24 kgm2, g = 9.8 m/s2.

Controller parameters:

G =




g11 g12

g21 g22

g31 g32

g41 g42


 KC =

[
k1c 0
0 k2c

]

k1c = 100, k2c = 100, g11 = 110, g12 = 0, g21 = 0, g22 =
150, g31 = 3000, g32 = 0, g41 = 0, g42 = 5600.

Initial conditions: x1 = 0.314 rad, x2 = 0.4 rad, x̂3 =
0.1 rad/s, x̂4 = 0.1 rad/s,
ξ1 = 0.013 rad/s2, ξ2 = 0.013 rad/s2, ξ̂1 = 0.01 rad/s2, ξ̂2 =
0.01 rad/s2.

APPENDIX B

Let ez = z− ẑ be the estimation error. Then, by substract-
ing (29) from (24) the estimation error dynamics results
in

dez

dt
= (A − GC)ez + ρ(z) − ρ(ẑ) + (π(z) − π(ẑ))u

Consider the Lyapunov candidate function V = eT
z Pez,

then

dV

dt
=

deT
z

dt
Pez + eT

z P
dez

dt
. (43)

Since ρ(z) + π(z)u is assumed to be Lipschitz in z, uni-
formly in u, with Lipschitz constant equal to L, there
exists L such that ‖ρ(z)− ρ(ẑ)+ (π(z)−π(ẑ))u‖ ≤ L‖ez‖,
consequently (43) can be bounded as follows

dV

dt
≤

(
−λmin

Q + 2λmax
P L

)
‖ez‖2.

When −λmin
Q + 2λmax

P L < 0 is satisfied, the derivative of

the Lyapunov candidate function is negative such that the

estimation error converges to zero.
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and M. I. Valla (2003). Sensorless speed con-
trol of permanent magnet motors driving an
unkwown load. CD Proceedings of the 2003
IEEE International Symposium on Industrial
Electronics (ISIE’03).

Etchechoury, M., J. Solsona and C. Muravchik
(2001). Feedback linearization via state trans-
formation using estimated states. Interna-
tional Journal of Systems Science 32, 1–7.

Isidori, A. (1995). Nonlinear control systems.
Springer-Verlag.

Ortega, R. and E. Garćıa-Canseco (2004).
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