

MODELO NUMERICO PARA EL ANALISIS TERMO-MECANICO DEL HORMIGON A TEMPRANA EDAD

Croppi, José Ignacio jcroppi@frsf.utn.edu.ar

GIMNI - UTN Facultad Regional Santa Fe, Lavaisse 610 (3000) Santa Fe, Santa Fe. ARGENTINA

INTRODUCCIÓN

proceso exotérmico de hidratación en el hormigón durante sus edades tempranas deriva en deformaciones volumétricas Εl generan tensiones. Estas aumentan a medida que las propiedades constitutivas del hormigón evolucionan. Una que consecuente fisuración puede reducir notablemente la durabilidad y funcionabilidad de la estructura. Se plantea entonces la necesidad de desarrollar una herramienta computacional para el estudio termo-mecánico del hormigón que contemple la hidratación y envejecimiento del material a corto plazo y las condiciones reales de emplazamiento de la estructura.

Módulo Térmico

Ecuación del Calor

Ley de Fourier - Conductividad

 $q = -k\nabla\phi$

Condiciones de Borde

 $\Gamma_{\phi} \cup \Gamma_{N} = \Gamma$ $\phi = \overline{\phi}$ en Γ_{ϕ} $-k\frac{\partial\phi}{\partial x} = \bar{q}.n$ en Γ_N $\Gamma_{\phi} \cap \Gamma_N = \phi$ $\phi(x,t=0) = \phi_0(x) \in \Omega$

METODOLOGIA

$$\rho c_e \dot{\phi} - k \Delta \phi = \dot{Q}$$
 en Ω

$$\begin{array}{c}
\Gamma_{\phi} \\
\Omega \\
(\dot{Q}) \\
\end{array}$$

n

Condición de Convección

$$\bar{q}.n = h(\phi - \phi_{ref})$$

Condición Inicial

Donde ϕ =Temperatura; \dot{Q} =Término fuente; c_e =calor específico; k=conductividad; ρ =Densidad; Δ =Operador laplaciano; *h*=coeficiente de convección; ϕ_{ref} =temperatura de referencia conocida (temperatura ambiente).

Término de Generación de Calor

$$\dot{Q} = Q_{\xi}\dot{\xi}$$

$$\dot{\xi} = \frac{k_{\xi}}{\eta_{\xi 0}} \left(\frac{A_{\xi 0}}{k_{\xi} \xi_{\infty}} + \xi \right) (\xi_{\infty} - \xi) \exp\left(-\bar{\eta} \frac{\xi}{\xi_{\infty}} \right) \exp\left(-\frac{E_a}{R\phi} \right) \qquad \xi_{\infty} = \frac{1.031 \ ^{W}/_{C}}{0.194 + ^{W}/_{C}}$$

Donde ξ =Grado de hidratación; E_a =Energía de activación aparente; R=Constante de Boltzmann; A_{ξ_0} =Afinidad química inicial; $\eta_{\xi_0}, \bar{\eta}$ =Viscosidades; k_{ξ} =Constante del material; ξ_{∞} =grado de hidratación a tiempo infinito; w/c=relación agua/cemento de la mezcla.

Módulo Mecánico

 $\mathbf{\Omega}$ \sim

RESULTADOS

Ensayos adiabáticos e isotérmicos

Valores de ensayos sobre probetas de hormigón extraídos de las referencias se comparan con los resultados del modelo analizado Εl hormigón planteado. tipo C**30.** Se es consideran condiciones de curado isotérmicas y adiabáticas

H50

/ C	0.00	0.02
C[10 ⁶ J/m ³ °C]	2.07	1.87
$k_T[J/m hs \circ C]$	5210	6000
$Q_{\xi}[10^8 J/m^3]$	1.58	1.814
$f_{\infty}^{+}[MPa]$	3.80	4.90
$f_{\infty}^{-}[MPa]$	34.5	54.00
$E_{\infty}[GPa]$	29.6	36.20
ξ_∞	0.75	0.64
$k_{\xi}/\eta_{\xi 0} [10^7/hs]$	0.14	0.27
$ar\eta$	7.00	8.40
$A_{\xi 0}/k_{\xi} [10^{-4}]$	1.00	1.00
$E_a/R [{}^{\circ}K]$	4000	4000
$\phi_T[^\circ C]$	100	100
$\phi_f[^\circ C]$	20	20
n_T	0.42	0.00
$\phi_0[^\circ C]$	21	19

Equilibrio $V \cdot \sigma + b = 0$ en Ω		
Tensiones y Deformaciones		Ιū
$\dot{\sigma} = D^{tan} (\dot{\varepsilon} - \dot{\varepsilon}_{\phi})$		
$\boldsymbol{\sigma} = (1 - d^+) \overline{\boldsymbol{\sigma}}^+ + (1 - d^-) \overline{\boldsymbol{\sigma}}^-$	Condiciones	3 de Bord
$\varepsilon = \nabla^{S} u$	$u = \overline{u}$	en $\Gamma_{\overline{u}}$
$\varepsilon_{\phi} = \alpha_T (\phi - \phi_{Tref}) \mathbf{l}$	σ . $n = \overline{f}$	en $\Gamma_{\overline{f}}$

Donde σ =Tensión; ε =Deformación; u =Desplazamiento; D^{tan} =tensor constitutivo tangente del material; $\overline{\sigma}$ =Tensión efectiva; $(.)^{-}y(.)^{+}$ =identifican la variable según compresión o tracción respectivamente; d=daño; b=fuerza de cuerpo por unidad de volumen;1=Tensor identidad de segundo orden; α_T =coeficiente de dilatación térmica; ϕ_{Tref} =Temperatura de referencia conocida para material libre de tensiones.

 $f^{-}(\kappa) = \kappa f_{\infty}^{-}$

Grado de Envejecimiento

 $\dot{\kappa} = \lambda_T(\phi) \,\lambda_{\bar{f},\xi}(\xi) \,\dot{\xi}$ $\lambda_{\bar{f},\xi}(\xi) = A_f \xi + B_f$

Correlación con otros parámetros

Donde κ =grado de envejecimiento; f^{\pm} =Resistencia a tracción o compresión; f_{∞}^{\pm} =Resistencia a tracción o compresión a tiempo infinito; E_{∞} =Modulo de elasticidad a tiempo infinito; ϕ_T =Máxima temperatura a la cual el Hormigón puede fraguar; ϕ_f =Temperatura de referencia para determinar f_{∞}^- ; n_T =sensibilidad a la temperatura de curado; A_f y B_f = constantes de la función derivada que relaciona la variación de la resistencia con la variación del grado de hidratación.

Para $r_0 \leq r \leq r_p$

Para $r_p \leq r$

Donde τ =norma de tensión efectiva; **C**=tensor métrico isótropo definido positivo; I=Tensor unidad de cuarto orden; γ =parámetro

relacionado a resistencias equibiaxiales tracción/compresión; r =variable interna normalizada que definen el umbral de

daño; g=criterio de daño; $r_0 = 1$ para ambos casos; r_e , r_p =establecen el tamaño de la superficie envolvente de daño para la

primer ocurrencia y la resistencia pico; A_d , B_d son parámetros que dependen de las variables: r_e , r_p , f^{\pm} , E (Módulo de

Modelo de Daño

 $\tau^{\pm} = \frac{1}{f^{\pm}} \left[\overline{\boldsymbol{\sigma}}^{\pm} : \boldsymbol{\mathcal{C}}^{\pm} : \overline{\boldsymbol{\sigma}}^{\pm} \right]^{1/2}$

 $\boldsymbol{C}^{\pm} = (1 + \gamma^{\pm})\boldsymbol{I} - \gamma^{\pm}\boldsymbol{I} \otimes \boldsymbol{I}$

 $r^{\pm} = max[r_0^{\pm}, max(\tau^{\pm})]$

 $g^{\pm}(\tau^{\pm}, r^{\pm}) = \tau^{\pm} - r^{\pm} \le 0$

elasticidad), G_f^{\pm} (Energía de fractura) y l^* (longitud característica).

Evolución del daño $d(r) = A_d \frac{r_e}{r} \left(\frac{r-1}{r}\right)^2$

 $d(r) = 1 - \frac{r_e}{r} exp \left[\frac{1}{B_d} \left(\frac{r - r_p}{r_e} \right)^2 \right]$

Fig. 1. Comparación de resultados. Línea continua = Modelo, Puntos = valores experimentales (a) temperatura en el tiempo y (b) relación entre f^- y ξ , ensayo adiabático. (c) y (d): Evolución en el tiempo de f^- y E respectivamente, comparando ambas formas de ensayo. (e) y (d): Tensión uniaxial de compresión hasta rotura en hormigones de distintas edades, para ensayos adiabáticos e isotérmicos respectivamente.

Análisis del tablero del puente Oresund

modela media sección del tablero Se de un puente, aprovechando la simetría, con una malla de 1271 nodos y 2272 elementos triangulares. Se imponen condiciones de convección superior, lateral inferior de е desplazamiento nulo en x e y inferiores y laterales. El paso de tiempo es de 0.25 hs. Se comparan resultados de las referencias sobre los sensores 1 y 10.

CONCLUSIONES

Los resultados obtenidos validan el procedimiento numérico planteado, mostrando un análisis correcto de la respuesta tensional del material ante los procesos de hidratación y envejecimiento que se dan a primeras edades. El proyecto cuenta con ejemplos térmicos resueltos previamente para estructuras reales hormigonadas por etapas, en particular presas (Croppi, J.I., Lazzaroni, M.C. Obras y Proyectos nº 16, 51-58, 2014). Como trabajo a futuro se pretende estudiar la respuesta tensional de estas estructuras.

REFERENCIAS

Cervera, M., Oliver, J. Prato, T. (1999). Un modelo termo-quimio-mecánico de hormigón a tempranas edades. Aplicación a la construcción de presas de HRC. Monografía CIMNE, 51, 13-48. Cervera M., Faria R., Oliver J., Prato T. (1999) Análisis Termo-Mecánico del proceso de fabricación de un tablero del viaducto de Öresund, Publicación CIMNE, 165, 3-28.